Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip
نویسندگان
چکیده
We demonstrate a trimodal waveguide architecture in a three-dimensional (3D) photonic-band-gap (PBG) material, in which the local electromagnetic density of states (LDOS) within and adjacent to the waveguide exhibits a forklike wavelength filter characteristic. This facilitates the control and switching of one laser beam with other laser beams ( ,1 mW steady-state holding power and ,5 nW switching power) through mutual coherent resonant interaction with quantum dots. Two waveguide modes provide narrow spectral windows where the electromagnetic LDOS is enhanced by a factor of 100 or more relative to the background LDOS of a third air-waveguide mode with nearly linear dispersion. This “engineered vacuum” can be used for frequency-selective, atomic population inversion and switching (by coherent resonant optical pumping) of an inhomogeneously broadened collection of “atoms” situated adjacent to the waveguide channel. The “inverted” atomic system can then be used to coherently amplify fast optical pulses propagating through the third waveguide mode. This coherent “control of light with light” occurs without recourse to microcavity resonances (involving long cavity buildup and decay times for the optical field). Our architecture facilitates steady-state coherent pumping of the atomic system (on the lower-frequency LDOS peak) to just below the gain threshold. The higher-frequency LDOS peak is chosen to coincide with the upper Mollow sideband of the same atomic resonance fluorescence spectrum. The probing laser is adjusted to the lower Mollow sideband, which couples to the linear dispersion (high group velocity part) of the third waveguide mode. This architecture enables rapid modulation (switching) of light at the lower Mollow sideband frequency through light pulses conveyed by the linear dispersion mode at frequencies corresponding to the central Mollow component (lower LDOS peak). We demonstrate that LDOS jumps of order 100 can occur on frequency scales of Dv<10vc (where vc is the frequency of the jump) in a finite-size 3D photonic crystal (PC) consisting of only 10310320 unit cells. When the semiconductor backbone of the PC has a refractive index of 3.5 and vc corresponds to a wavelength of 1.5 mm, this vacuum engineering may be achieved in a sample whose largest dimension is about 12 mm.
منابع مشابه
A New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)
Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...
متن کاملInfluence of optical Kerr coefficient on photonic band structures of hexagonal-lattice function photonic crystals
In this paper, we have studied the photonic band structure of function photonic crystals in which the dielectric constant of the scattering centers (rods) is a function of space coordinates. The under-studied lattice is hexagonal and cross section of rods has a circular symmetry embedded in the air background. Photonic band structures for both electric and magnetic polarizations of the electrom...
متن کاملDiffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations.
We demonstrate on-chip, single-mode, waveguiding of light in air for a variety of 2D-3D photonic band gap (PBG) heterostructures. These include square spiral, woodpile, slanted pore, and inverse opal three-dimensional (3D) photonic crystals intercalated with a 2D (planar) photonic crystal microchip. Design rules are established to yield maximal single-mode waveguiding bandwidths of up to roughl...
متن کاملPhotonic Band Gap Materials: A Semiconductor for Light
Light in certain engineered dielectric microstructures can flow in a way similar to electrical currents in semiconductor chips. These microstructures represent a new frontier in the field of optics. They provide a foundation for the development of novel micro-photonic devices and the integration of such devices into an optical microchip. Glossary: Photonics: the science of moulding the flow of ...
متن کاملBand Structures for 2D Photonic Crystals in Presence of Nonlinear Kerr Effect Calculated by Use of Nonlinear Finite Difference Time Domain (NFDTD) Method
We report the simulation results for impact of nonlinear Kerr effect on band structures of a two dimensional photonic crystal (2D-PhC) with no defect, a PhC based W1-waveguide (W1W), and also Coupled-Cavity Waveguides (CCWs). All PhC structres are assumed to a square lattice of constant a made of GaAs rods of radius r=0.2a, in an air background. The numerical simulation was performed using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004